462 research outputs found

    Specifying Logic Programs in Controlled Natural Language

    Full text link
    Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled natural language as a declarative and application-specific specification language. Controlled natural language is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented a prototypical specification system that successfully processes the specification of a simple automated teller machine.Comment: 16 pages, compressed, uuencoded Postscript, published in Proceedings CLNLP 95, COMPULOGNET/ELSNET/EAGLES Workshop on Computational Logic for Natural Language Processing, Edinburgh, April 3-5, 199

    Attempto - From Specifications in Controlled Natural Language towards Executable Specifications

    Full text link
    Deriving formal specifications from informal requirements is difficult since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge the conceptual gap we propose controlled natural language as a textual view on formal specifications in logic. The specification language Attempto Controlled English (ACE) is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage. The Attempto system translates specifications in ACE into discourse representation structures and into Prolog. The resulting knowledge base can be queried in ACE for verification, and it can be executed for simulation, prototyping and validation of the specification.Comment: 15 pages, compressed, uuencoded Postscript, to be presented at EMISA Workshop 'Naturlichsprachlicher Entwurf von Informationssystemen - Grundlagen, Methoden, Werkzeuge, Anwendungen', May 28-30, 1996, Ev. Akademie Tutzin

    Attempto Controlled English (ACE)

    Full text link
    Attempto Controlled English (ACE) allows domain specialists to interactively formulate requirements specifications in domain concepts. ACE can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage. The Attempto system translates specification texts in ACE into discourse representation structures and optionally into Prolog. Translated specification texts are incrementally added to a knowledge base. This knowledge base can be queried in ACE for verification, and it can be executed for simulation, prototyping and validation of the specification.Comment: 13 pages, compressed, uuencoded Postscript, to be presented at CLAW 96, The First International Workshop on Controlled Language Applications, Katholieke Universiteit Leuven, 26-27 March 199

    Arithmetic of Calabi-Yau Varieties and Rational Conformal Field Theory

    Get PDF
    It is proposed that certain techniques from arithmetic algebraic geometry provide a framework which is useful to formulate a direct and intrinsic link between the geometry of Calabi-Yau manifolds and the underlying conformal field theory. Specifically it is pointed out how the algebraic number field determined by the fusion rules of the conformal field theory can be derived from the number theoretic structure of the cohomological Hasse-Weil L-function determined by Artin's congruent zeta function of the algebraic variety. In this context a natural number theoretic characterization arises for the quantum dimensions in this geometrically determined algebraic number field.Comment: 21 pages, Late

    Landau-Ginzburg String Vacua

    Full text link
    We investigate a class of (2,2) supersymmetric string vacua which may be represented as Landau--Ginzburg theories with a quasihomogeneous potential which has an isolated singularity at the origin. There are at least three thousand distinct models in this class. All vacua of this type lead to Euler numbers which lie in the range −960≀χ≀960-960 \leq \chi \leq 960. The Euler characteristics do not pair up completely hence the space of Landau--Ginzburg ground states is not mirror symmetric even though it exhibits a high degree of symmetry. We discuss in some detail the relation between Landau--Ginzburg models and Calabi--Yau manifolds and describe a subtlety regarding Landau--Ginzburg potentials with an arbitrary number of fields. We also show that the use of topological identities makes it possible to relate Landau-Ginzburg theories to types of Calabi-Yau manifolds for which the usual Landau-Ginzburg framework does not apply.Comment: 92p

    Sound Localization in Single-Sided Deaf Participants Provided With a Cochlear Implant

    Get PDF
    Spatial hearing is crucial in real life but deteriorates in participants with severe sensorineural hearing loss or single-sided deafness. This ability can potentially be improved with a unilateral cochlear implant (CI). The present study investigated measures of sound localization in participants with single-sided deafness provided with a CI. Sound localization was measured separately at eight loudspeaker positions (4°, 30°, 60°, and 90°) on the CI side and on the normal-hearing side. Low- and high-frequency noise bursts were used in the tests to investigate possible differences in the processing of interaural time and level differences. Data were compared to normal-hearing adults aged between 20 and 83. In addition, the benefit of the CI in speech understanding in noise was compared to the localization ability. Fifteen out of 18 participants were able to localize signals on the CI side and on the normal-hearing side, although performance was highly variable across participants. Three participants always pointed to the normal-hearing side, irrespective of the location of the signal. The comparison with control data showed that participants had particular difficulties localizing sounds at frontal locations and on the CI side. In contrast to most previous results, participants were able to localize low-frequency signals, although they localized high-frequency signals more accurately. Speech understanding in noise was better with the CI compared to testing without CI, but only at a position where the CI also improved sound localization. Our data suggest that a CI can, to a large extent, restore localization in participants with single-sided deafness. Difficulties may remain at frontal locations and on the CI side. However, speech understanding in noise improves when wearing the CI. The treatment with a CI in these participants might provide real-world benefits, such as improved orientation in traffic and speech understanding in difficult listening situations

    Heterotic Gauge Structure of Type II K3 Fibrations

    Get PDF
    We show that certain classes of K3 fibered Calabi-Yau manifolds derive from orbifolds of global products of K3 surfaces and particular types of curves. This observation explains why the gauge groups of the heterotic duals are determined by the structure of a single K3 surface and provides the dual heterotic picture of conifold transitions between K3 fibrations. Abstracting our construction from the special case of K3 hypersurfaces to general K3 manifolds with an appropriate automorphism, we show how to construct Calabi-Yau threefold duals for heterotic theories with arbitrary gauge groups. This generalization reveals that the previous limit on the Euler number of Calabi-Yau manifolds is an artifact of the restriction to the framework of hypersurfaces.Comment: 15 pages, 3 eps figure

    Strange semimetal dynamics in SrIrO3_3

    Get PDF
    The interplay of electronic correlations, multi-orbital excitations, and strong spin-orbit coupling is a fertile ground for new states of matter in quantum materials. Here, we report on a confocal Raman scattering study of momentum-resolved charge dynamics from a thin film of semimetallic perovskite SrIrO3\mathbf{SrIrO_3}. We demonstrate that the charge dynamics, characterized by a broad continuum, is well described in terms of the marginal Fermi liquid phenomenology. In addition, over a wide temperature regime, the inverse scattering time is for all momenta close to the Planckian limit τℏ−1=kBT/ℏ\mathbf{\tau^{-1}_{\hbar}=k_{\rm B} T/\hbar}. Thus, SrIrO3\mathbf{SrIrO_3} is a semimetallic multi-band system that is as correlated as, for example, the cuprate superconductors. The usual challenge to resolve the charge dynamics in multi-band systems with very different mobilities is circumvented by taking advantage of the momentum space selectivity of polarized electronic Raman scattering. The Raman responses of both hole- and electron-pockets display an electronic continuum extending far beyond 1000\icm (∌\sim125 meV), much larger than allowed by the phase space for creating particle-hole pairs in a regular Fermi liquid. Analyzing this response in the framework of a memory function formalism, we are able to extract the frequency dependent scattering rate and mass enhancement factor of both types of charge carriers, which in turn allows us to determine the carrier-dependent mobilities and electrical resistivities. The results are well consistent with transport measurement and demonstrate the potential of this approach to investigate the charge dynamics in multi-band systems

    Universality of optimal measurements

    Get PDF
    We present optimal and minimal measurements on identical copies of an unknown state of a qubit when the quality of measuring strategies is quantified with the gain of information (Kullback of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions. We finally investigate the optimal capacity of NN copies of an unknown state as a quantum channel of information.Comment: Revtex, 5 pages, no figure
    • 

    corecore